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It is well known that a fluid drop (bubble), placed in a different fluid (unmixed with 
it), and found in a temperature field with a constant gradient, drifts in the absence of 
external forces in the direction of the temperature gradient with constant velocity 

Id~ IAa 2 
U = d'--~-[9- ~ (2 + 8)(2 + 3~}' 

where o is the interphase surface tension; T is temperature; do/dT = const; A, constant tem- 
perature gradient at infinity; a, drop radius; ~z, dynamic viscosity of the external medium; 

and 6, ratios of the dynamic viscosities to the fluid thermal conductivities inside and 
outside the drop, respectively. 

The expression first derived for the rate of thermocapillary drift was obtained theo- 
retically and verified experimentally in [1]. Consequently, the thermocapillary drift ef- 
fect of drops and bubbles was investigated in detail (see, for example, [2-5]). In particu- 
lar, it was noted that a drop which is more dense than the fluid is expanded while drifting 
in the direction of motion, and is compressed in the opposite case [3, 5]. 

Thermocapillary drift occurs due to the Marangoni effect, causing, by the temperature 
dependence of the surface tension, generation of additional tangential stresses at the sur- 
face of a drop (bubble) in an external temperature field. As was first noted in [6], these 
additional tangential stresses at the drop surface may occur due to the nonuniform tempera- 
ture distribution, generating proper drop motion in a primarily isothermal medium, when we 
have at the drop surface exo- or endothermal interphase reactions with participation of ma- 
terial dissolved in the continuous phase. In this case, for certain parameter values it 
is possible to have generation of a tractive force acting on the drop [6, 7], as well as 
drift of the drop with constant velocity in a direction dependent on the initial conditions 
[7]. Similar effects are conveniently called chemithermocapillary. The chemithermocapil- 
lary drift rate is [7] 

do/dT ]2 t 
U, = 0.049 Dla QCoo ~z) h (1 + (3/2). ]3) (2 + 6) 

where D l is the diffusion coefficient of the reagent in the external fluid; Q, thermal ef- 
fect of the interphase reaction; C~, reagent concentration far from the drop; 11 , thermal 
conductivity of the external fluid. This result refers to the case in which the diffusion 
Peclet number is large: Pe = U..oa/D I ~ l, while the thermal Peclet numbers are small: 
Pexi = U,a/Xi ~ 1 (Xi are the phase thermal diffusivities). 

It was assumed in [7] that the interphase surface tension is large and, therefore, the 
drop retains its spherical shape. In this case, the balance condition of the normal momen- 
tum components at the interphase surface reduced to a nonsubstantial pressure jump, while 
the balance condition of tangential components would lead to an infinite system of equations, 
relating the expansion coefficients of the current function in Gegenbauer polynomials in 
Cn -z/2, whose approximate solution provided an expression for the force acting on the drop. 

It can be shown, however, that account of the balance of normal stress components at 
the phase separation surface leads to the conclusion of varying shape of a drop moving due to 
the chemithermocapillary effect even in the zeroth approximation in the Reynolds number. 
This deformation under consideration differs from the deformation of a nonreacting drop (bub- 
ble) moving in the fluid - ordinary or thermocapillary. Thus, it was shown in [3, 5, 8] 
that during drop motion in a fluid its shape remains spherical for any Weber numbers in the 
vanishing approximation in the Reynolds number, since the solution corresponding to this 
approximation satisfies the balance conditions of both tangential and normal stress components. 
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i. We recall the statement of the problem considered in [7]. A drop of a distinct 
(unmixed) fluid moves in an infinite, homogeneous fluid with constant velocity. At the sur- 
face of the drop a chemical reaction takes place with heat release (absorption), the reagent 
is transported by diffusion from the external fluid, and reacts instantaneously at the inter- 
phase surface (the diffusion regime). The Pe value is assumed large, and that of Pexi is 

assumed to be small (since for most fluids the Lewis number is L = x/D ~ i02). Within the 
approximations of creeping flow (Re = 0), diffusion boundary layer (Pe >> I), and within 
the vanishing approximation in small thermal Peclet numbers (Pexi = 0) inside and outside 

the drop, the fluid equations of motion and the distributions of reagent concentration out- 
side the drop, and of temperatures in both phases, are described by the following equations 
and boundary conditions in dimensionless variables in a spherical coordinate system, attached 
to the drop center of mass: 

E ' r  E ~ = O;~r + (1 -- W)r-~O~,  ( 1 . 1 )  
~ - - ~ c o s O ,  i = t ,  2, 

r - + ~ ,  a h - +  l ( l - - u  ~)r ~, r = 0 ,  %./r 2 < ~ ,  _-U , 

F : 1 ,  0~tlD1 = 0[~0[~ 2 : 0 ,  0;.lpl = 0rl]32; 

a (%, ..) I 0% 
- -  r - + o o ,  z - + O ,  r = l ,  z 1; 0 (r, ~t) Pe Or ~' 

A% = 0, i = 1, 2, r ~ o o ,  % - + 0 ,  r = 0, % < o o ,  

r = l ,  r : (D2, 0r(Pl - -  ~0r(P2 ~'~ OrZ; 

/Ile ) 
- -  Re (Ih - -  ~P,_,) - -  2 0 ~  (% - -  ~q;2) = z IW? + Ma ( P l  , r = ~, 

(1.2) 

(1.B) 

(1.4) 

(1.5) 

Here ~i' = U~a2~i (i = 1 refers to the external fluid, and i = 2 to the fluid inside the 
drop); r = r'/a; z = (C~ - C)/C~; ~i = LS,-l(Ti - T~); Pi = Pi'(piU~2)-I(~I/Di); 8, = QC~" 
(91Cpi)-~; Q, thermal effect of the interphase reaction; Pe = U=a/D, Re = U~a/vl, We = 

piU=2~/o~, Ma = L-18,o~-1(do/dT) Re/We are the Peclet, Reynolds, and Marangoni numbers; C, 
reagent concentration in the continuous phase; Pi, 9i, and Ti, pressure, density, and tem- 
perature; Pi, vi, %i, Xi, and cp, dynamic and kinematic viscosities, the thermal conductivity 
and diffusivity, and the speciflc heat capacity; T~, temperature away from the drop; o~, 
interphase surface tension corresponding to this temperature; U~, fluid velocity far from 
the drop; subscript i = i refers to the continuous phase and 2 to the drop; $ = P2/DI; 6 = 
12/11; L = xI/D; the primes denote dimensional quantities; the direction of the polar axis 
coincides with the drop flow direction at infinity. 

Problem (1.1)-(1.5) is solved as follows. Initially one finds the solution of problem 
(i.i) without singularities in the whole flow region, accurately within the undetermined 
constants A, A n (n e 3): 

~ = (r 2 + Ar - -  (A + t)  r -1) G 2 (~t) @ ~ A,, (r- , ,+3 - -  r - . +  D G~, (~0, 

•2 = ( A  + 3 / 2 )  (r 4 - -  r ~-) G 2 (~) + ~] A .  (r "+" - -  r ' )  G,, (u)  
n = 3  

( i . 6 )  

[Gn(p) are Gegenbauer polynomials of order n and degree -I/2(Gn(D) ~ Cn-I/2(~))]. 

Using (1.6), one can find the solutions of problem (1.2), (1.3) which contain the un- 
known constants A, A n (n e 3). Substituting these solutions into conditions (1.4), express- 
ing the balance of tangential stresses, we obtain an infinite nonlinear system of equations 
in A, An: 

A t + (3 /2)~@ I n ( n - / t )  Ma B 
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B,,== (n+t/2) ~ (1 7) 
- ( .  + 1 + 6.) ~ V ~  I (~) I (r,) g~ P,, (~,) ~ ,  

- -1  

/ (V) = (2A -6 3) G 2 (~) -6 ~ 2A~G. (p), e -- Pc-~/: 
n = 3  

(a more detailed derivation of the system was given in [7]). 

Assuming that as We + 0, condition (1.5) reduces within the principal approximation to 
an equation for the pressure jump at the drop surface, and the problem reduces to a solution 
of system (1.7) in the constants A, A n (n e 3) [7]. If the We value is arbitrary, then in 
(1.5) it is necessary to include the terms containing the stream ~i and temperature ~z func- 
tions. From (1.6) we find for the pressure [9] 

Re Pl = - -  u~r + - ~ -  Pl  (~) -6 Z 2 (2n -- i) n :~- ~ A"+lr-n-lP~ (P)' 
r l = 2  

Re p_. = (-- .~2 -6 t0 (A -6 3/2)) rP~ (,u) -6 ~ 2 (2n -~ 3) A.+~r"P~, (,u), 

(1.8) 

where ~i = Pig~/(U~l) is the dimensionless hydrostatic pressure; g is the free-fall acce- 
leration (the mass force is the weight function); and 9 0 = const. For uniform motion ~z - 
~2 = 3A. Substituting relationship (1.8) then, with account of this equality into (1.5), 
we have a new system of equations for the constants A, An: 

A - -  1§ I n(,~+~) i + ~  - g - M a B l ( i + ~ ) - l ,  A n + l =  M a 3 ( ~ + n )  B~, n ~ 2  ( 1 . 9 )  

[the expression for B n is the same as in (1.7)]. 

Equations (1.7) and (1.9) can be satisfied simultaneously only for A. For An+ l (n e 2), 
Eqs. (1.7) and (1.9) are incompatible. This implies that the drop shape cannot be assumed 
to be spherical even within the zeroth approximation in the Reynolds number (the Stokes ap- 
proximation under conditions of the chemithermocapillary effect): the nonuniformity of tem- 
perature distribution over the surface of the drop leads to its deformation and to the ap- 
pearance of additional harmonics of the stream function. Nevertheless, the constants An+ 1 
(n ~ 2) decrease quickly with increasing n, and they can be assumed to be small in compari- 
son with A. Consequently, one can construct an approximate solution of system (1.7), (1.9), 
neglecting in the expressions for B n the contribution of the terms proportional to the con- 
stants A n (n e 3). Thus, in this approximation, A n ~ 0 (n e 3), while for A one obtains 
a nonlinear equation whose solution provides an expression for the force acting on the drop 
under conditions of the chemithermocapillary effect (see Eq. (15) in [7]). We note that 
the conditions for the tangential and normal stress components are satisfied simultaneously 
[the first equations in (1.7) and (1.9)], so that within this approximation the drop can 
be assumed to be spherical for any We. Nevertheless, it follows from (1.7) and (1.9) that 
A n ~ 0 (n e 3). The constants A n cannot be calculated without taking into account the vari- 
ation in the drop shape, since the equations for A n (n ~ 3) in systems (1.7), (1.9) are in- 
compatible. However, from the smallness of the constants A n in comparison with A it follows 
that the drop deformation is small (of order An/A). 

Below we construct a refinement of the solution of problem (1.1)-(1.5) obtained in [7], 
taking into account the higher harmonics in the stream functions (1.6) and the variation 
in the drop shape. 

2. Consider a fluid drop of arbitrary, quite smooth shape, moving in a different fluid 
(unmixed with it). On the surface of the drop there occurs in the diffusion regime a non- 
isothermal chemical reaction due to the reagent dissolved in the external fluid. The sur- 
face tension of the drop depends on temperature linearly. The Re and Pexi are assumed to 

be small, and the Pe value - large. We select a spherical coordinate system with a n origin 
coinciding with the center of mass of the drop. The distributions of fluid flow velocity, 
reagent concentration in the continuous phase, and the temperature distributions outside 
and inside the drop within the approximations of creeping flow, diffusion boundary layers, 
and absence of convective thermal conductivity, respectively, are described by the following 
equations and boundary conditions in dimensionless form: 
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E4q~z --- 0, E 2 = O~ 4- r -~" (1 - -  S ')  0~g, ( 2 . 1 )  
. t 2 r ---'- ~ ,  ~ -+  (t:2)r~-(l - -  ~t~-), r = 0, ~ v r  * (  oo, r = R,  ~b 1 = ~2 = 0, 

, 12' / / '  . . 

-r-' O ( r , ~ t ) - - P o - ~ A z ,  r - + o o ,  z = 0 ,  r = R ,  z = l ;  ( 2 . 2 )  

A(p~ = O , i = t ,  2, r---~oo, ~l - -~  0, r = 0, q% < eo, ( 2 . 3 )  

r -~- t~ ,  (D1 = (f)2, Or(Pl - -  (/~t//~2)( 1 -- ~ 2)0 ~(Pl - -  

- ~(a~ - (~'/~)(i - ~)0~ ~) = 0~z; 

r = R, 2 [ 2 0 ~ , - -  3R-~Og,p ~, ~( t  - -  [ t " ) - tO~]~ X ( 2 . 4 )  

( • (1 -- ~t ~) R'/R + [20~, --/~0~g, 4- R -~ (i -- ~)  0~g~]~ 1 - - ( t  -- ~)  = 

_ _  ] ~ , / ~ - - 1  [ 2 0 r / D  _ _  ~0~.r~q) -I-  /L~--I ( 1  - -  [.t 2) ( ~ g l l ? ] ~  - -  ( 2 . 5 )  

[ I'/ ( ) ( ; ) (  ) ,, , I a ~  t -k (1  . 1 ,  @ M a  (f: 

Here R ~ R(D) is a function describing the shape of the drop in the spherical coordinate 
system; R' ~ dR/dD; 8n, normal derivatives with respect to the drop surface; h ~ h(D), 
dimensionless curvature of the interphase boundary; [']2 1 = (')i - ~(')2. The boundary con- 
ditions in (2.3) express the equality of temperatures and balance of thermal fluxes at the 

(2.5) and (2.5) express the balance of tangential and normal 
length scale is the radius a of a sphere, of equal volume with 

drop surface, and conditions 
stresses, respectively. The 
the drop. 

The solution of problem (2.1)-(2.5) is constructed similarly to the solution of the 
problem in [7]. It has been shown in Sec. i that the variation in the drop shape can be 

assumed to be small: R(~t) = I @ '~(~), l~(,u)] << I, ~(~u) = ~ %~Pn(g), while X0 = Xl = 0; since the 
~--0 

fluid is incompressible and the origin of coordinates coincides with the center of mass of 
the drop. From the conditions satisfied on the spherical surface it follows that, on a weak- 
ly deformed surface, 18D~I - [$ (~)I << 1 . 

The current functions ~0i, satisfying the equation E~i = 0 and the boundary conditions 
at the origin of coordinates and at infinity, are [9] 

~Pt = ("'- 4- 132,'-~ -1- DZ)  G2 (P) 4- ~ (/;',,r - ' + 1  + D,, r-,'+3) G,, (p), 
nee3 

r = (Az"- ~- C~. r4) G.. (t,) + ~ (A,,r ~ @ C~r.-t-2) G,~ (t,O. 
(2. 6)  

The first terms in (2.6) provide, for weak drop deformation, the main contribution to the 
chemithermocapillary effect and, therefore, we take into account the surface nonsphericity 
only in these terms, denoted by ~i (~ and ~2 (~ so that for r = 1 + ~(p) we obtain, accu- 
rately within 0(6), 

,~ (r, . )  = g,~ (t, ~) + ar,~ ~ [ r l  ~ (~), 
o o  o o  

o~ = ( l /2)n(n - -  l ) [Z ,_2/ (2n  -- 3 ) - -  %~/(2n -l- 1)1. 

( 2 . 7 )  

Substituting (2.6), with account of (2.7), into the boundary conditions of (2.1) for 
r = R, and retaining terms of first order of smallness in ~(~), we determine the conditions 
on the coefficients in the stream function, using which we find 
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, ~  = (r e + D.,r - -  r - 1  ((D.,. -~- 1) - -  (2D~ -~- 3) Z~'5)) G: (~() ~- 

+ ~ [Dn (r -n+3 -- r - " + ' )  -- (%r-"+t]  G,, (t,,), 

g,2 = [(D., + 3/2 - -  3z.dlO ) (r { -- r 2) + (O2 + 3/2) (37 /5 )  r:i  a~ (,u) + 
oo 

@ .~ [D,~ (r,d-z - -  r ' )  + (o,~ ((n - -  2 (D, f- t)) r '~+2 - -  (n - -  (2D., + 3 ) ) r  t) G,, (p). 
~q=3 

( 2 . 8 )  

We turn to problem (2.2) and consider its solution within the approximation of the dif- 
fusion boundary layer [i0]: 

z=~ei'fe( ~1:' ] i 
t , 2~] /T / '  t =  . (Rz_f_ R'~JO,~i:dit, r  ( 2 . 9 )  

- - t  

[~i is defined by expression (2.8)]. Differentiating (2.9) normally to the surface of the 
drop, we obtain an expression which is accurate within terms of first order of smallness 
in ~ ( l l )  : 

1 
O,,z = ]o (~0 + Jl (W, ]o (~0 - '  ~ V ~  t~ 

t --112 [ 0  ' (1) , 2 riO) l --  ', 
/ t  ( t l )  : - -  g ! / ~  TO , r ~ i  ~ -  0rr l l ;1  ~ ( g )  ~ 28  ~ / ~  r0  3/2Or'q '[0)Tl '  

~t Vt 

to = [. o,r176 rl = j" [(2o,.,{ ~ + o7,,I ~ i(N + o,.r @., 
--1 --1 

r = (r 2 + D.2r _ r -1  (D2 -}- 1)) G 2 (n), 

X,_, G ' ~  [D,~ (r - ' + 3  - -  r - , ,+ l )  o),,r-,,+:] G~ (~u) ~q)?) : F -1 (2D 2 @ 3) ~ 2 (LI). -~- z_~ 
?Z~3 

( 2 . i o )  

(the derivative values are taken at r = i). Expression (2.10) for 3nZ must be substituted 
into the boundary condition of equality of thermal fluxes for r = R in (2.3). The solution 
of problem (2.3) is: 

fPt = ~ ~ . r - ~ - l P . ( p ) ,  qD,,---- ~ [~,r'~P~(p). (2.11) 
~ : 0  n:O 

The basic contribution to the chemithermocapillary effect is provided by the lowest 
0 1 2 ) harmonics in (2.11). We denote T:( ) ~ ~0 r- + a:r- ~, q 2 (~ = $0 + ~:r~, and take into 

account the nonsphericity of the drop surface only in the expression for ~i (~ similarly 
to the way it was done in the case ~i (~ retaining terms of first order of smallness in 
~(~). Accurately within 0($(~)), the boundary conditions at r = R in (2.3) are 

<o)o r  (p~o) o __(o>. + c T ,  r = i ,  ~o )  ~- o,.~, ~ (.,) + = .. + ~,,~., ~ (,u) . 

~. (o)~ @ 0 - (1) ar~i  ~ + o. .~1 ~(~) .~1 - ~ ' @ ) ( i - W ) a ~ r  ) 

- ~ (o,~$ ~ + +Gm~~ (v) + o.(r7 ) - ~' (,u) (t - ~<) o~(pT = 

= 1o (P) + h (t,), q?! 1) = 9i  - -  (~(o). 

( 2 . 1 2 )  

The expressions for J0(D) and j:(D), determined in (2.10), are expanded in series in 
Legendre polynomials: 

1 

__ ~ 1  h~P, , (~ )du ,  p = O ,  1, 
--1 

2 .  ~ (o). (L,O, ~ • , ,  Xn ~t n ~2 = n ~t t,tt). 
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Since the coefficients Kn (~ and <n (z) decrease quickly with increasing n, we assume that 
~ ~ O(~) and E= - o(g). Using properties of the Legendre polynomials and equating coeffi- 
cients of polynomials with identical powers, from (2.11) and (2.12) we obtain conditions 
relating the coefficients ~n, ~n, and Kn: 

gO = [30, f f ' 1 ( l - - ( 4 1 ' S ) X 2 )  = [ ~ 1 ( t - t - ( 2 / S ) ) ~ 2 ) t  

__(aoX,_}_(6/7)CqXa_j_c% ) = o, (o ,7 )~ ,>-~%,  

k k % = 

~ Z ~ - ~ . §  n -~ : ,  k~> ~" 

c.g, •176 • 2 ~  (t .~,~ . (o ) . .  (1) 
- -  = ' - -  - -  ( ' ) / ; ' )  Z2)  - -  ~ !  ( ' I - - ( G / S )  X2) = ~1  -l-, 'I-1 �9 

2 % >  + (6/7) % Z a -  3% - -  6 (2fL, - -  (t2/7) ~7~a) = x~ ~ 
_ [k (~r -F 5) (k -F ~) (4 - -  ~-) ) 

2aoZ h -1- uq I 2k - -  I Xh-1 @ 2k-~ ~ %h'{-17 -- 

2 1 g - 1 - 3  Xh--1  2 ] g - - ] .  ] j  = x}O,' k ~ 3 .  

( 2 . 1 3 )  

( 2 . 1 4 )  

We note that the coefficients <i depend, in turn, on the constants D i in the stream functions 
and on Xi- 

We substitute into (2.4) and (2.5) expressions (2.8) for the stream functions and the 
temperature distributions (2.11) with the coefficients ai and ~i, satisfying (2.13) and (2.14), 
taking into account first-order terms in g(~) and the nonsphericity of the surface only in 
~i (~ ~i (~ and pi (~ [pi (~ are the vanishing and first harmonic pressures in (1.8)]. 
Equating the coefficients of Legendre polynomials of identical powers, we find an infinite 
system of equations in D i and Xi, while the equations for D 2 and X2 are nonlinear, 
those for D i and X3 (i e 3) are linear. In this case one uses in (2.5) the relation h(>) = 
1 - ~(>)  - ( 1 / 2 ) [ ( 1  - > = ) g ' ( p ) ] ' ,  I~[ < 1 [81 .  

The system of equations for the coefficients D i and Xi is coupled. The following pro- 
cedure is used to decouple the equations. We neglect the terms Xi, i e N, D k (k e N + i) 
in comparison with D N (N z 2). This procedure can be justified, since the coefficients Xk 
and D k decrease with increasing k, and the conditions for normal and tangential stress com- 
ponents are satisfied for the first principal harmonic on the nondeformed surface (Sec. i). 
Restricting ourselves to second harmonics, we have for D 3 and X2 the system of equations 

• • 
tOD3 (t @ 9) -- 6Maz23 g_ 26 6Ma 3 q_-" 26, 

tte 5 + 46 Wo)/ •176 
- -  D~ (2 § 3~) § Z: 4Wo - -  2Ma ~ o / = 2Ma 5 + 26' 

whose solution is 

Zz = Ma •176 D a == --  t2 Ma • ~ - - M a  • 1 7 6  (0)~)5-1, 

F(o j,~ 
A = 20 (1 § [3) ~ to ~- 26) --  g a •  ~ (56 -k 59[3 § 406 (t -~ [3)), 

1 

. (o) ~ 1/@-~ / ~ . T  o~,),1/2 ; t - -  u zo -- 2 |, -~ (D., § ol-) ---aT=~-~ ~,' du., ~ 0.6 V Pe (D~ -b 3/2), 
- -1  

l 

'-.T 3,2),/e f l--~t P . (u)du~0.07  VPe(D~@3/2). xf, o ) _  5 t / ~ | /  ~ ( D  2 §  
= 4 g 2 = - - ~  - ' 

- -1  

For  t h e  f u n d a m e n t a l  h a r m o n i c  D= we o b t a i n  t h e  same e q u a t i o n  as  i n  t h e  c a s e  o f  a n o n d e f o r m e d  
s u r f a c e  [ 7 ] :  

D,, 1 + (3/2) ~ 6 (2 - %/.~) 1/F;7 (D~ + 
l § ~ 5 $.'7 ~1 q- 13> (2 -F 6) 2 j , 

(2.15) 
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A / 

0 r 

with the solution 

Fig. i 

D~ 1,2) : 

1 + ~  - ~ -  ~__+ l_Fff~-~ +] j, ( 2 . 1 6 )  

[ 0.',8Ma ]/F~ ]~. 
The dependence of D= on ~ (2.16) is shown schematically in Fig. i. The upper branch 

corresponds to 8,do/dT < 0, and the lower to 0,do/dT > 0. It is seen that for ~ > ~, and 
0,do/dT < 0 a tractive force is generated, while for 8,do/dT > 0 and increasing r the re- 
sistance force is enhanced and tends to the Stokes force (D 2 = -3/2), i.e., the drop behaves 
as a hard ball. For ~ = ~,, D 2 = 0 and the force acting the drop from the side of the sur- 
rounding fluid, F = -4~NzaD2U= [9], vanishes; in this case, the drop drifts with velocity 
U, (see Sec. I, as well as [7]). 

We analyze now the variation in the drop shape. Using the expression for Ma (Sec. I), 
(2.15) is conveniently rewritten in the form 

%0. = M a , I  2 l / P e  (D 2 q- 3,/2) A .  x, 

A, = 20 (1 -~ 6) (3 + 26) + [o:~ta, VPe (D~ -" 4'2) (56 + 59~ + 405 (l + 5)), 
1 

]~ '~ -a -~=L- lO*d~ [0 ~ V,-~; , l - , t  d~0.651,  
- ~ r '  = - Y  u 1 / ~ - ~  ' 

--1 
i 

12 = _ ~5 vf~._~ ; ]/21-- ~-- t~ P2 (iO d'~ "~ O 082" 
- - 1  

(2 .17)  

It is seen that if o + ~, then X2 + 0, i.e., the drop remains spherical. Consider the two 
limiting cases: Ma,Pe I/2 ~ 1 and Ma,Pe I/2 m i. In the first case we have 

t~Ma,Po1/2(D~-[ 3/2) 1/2 ~ 4 . 1 . t 0 _  a Ma,Pel/2(D 2+3j2)  '" 
% 2 :  20(1-b~)(3 ~25) (1+~)(3-]-25)  

The sign of X2 coincides with that of Ma,. If Ma, < 0 (the force acting on the drop, less 
than the Rybchinskii-Hadamard force, is a tractive or vanishing force - drift with constant 
velocity [7]) then X2 < 0 and the drop is displaced in the direction of motion. If Ma, > 0 
(the force acting on the drop is stronger than the Rybchinskii-Hadamard force), the drop ii~_ 
extends in the direction of motion. In the drifting state 

%~ : - - t . 1 1 . 1 0  -a  no(O,~-l#,/~T) 2 
~ x t L ( l - ~ ) ( i  ~(3/2)~)(2~6)(3-]-26)'  

i.e., the drop has a shape of an ellipsoid slightly flattened along the drift direction. 
This is natural, since in the drift state the thermocapillary component of tangential stresses 
is directed toward the drifting drop; the temperature in the front portion of the drop is 
higher than on the back side (similarly to thermocapillary drift in the temperature gradient 
field), and, consequently, the Laplace pressure in the leading portion is less than in the 
trailing portion, leading to a decreasing drop curvature in its leading portion - surface 
flattening. 
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In the second case, 

0 

2.26. t0 - a  
1 -r (59/5G) ~ ~ (5/7) 6 0 + ~) ' 

whence it follows that the drop always extends in the direction of motion, independently 
of the sign of Ma,. 

In the intermediate case (Ma,Pe I/2 - i), Eq. (2.17) is valid, but if Ma, < 0, the de- 
nominator contains a difference of two positive numbers, which can vanish for certain param- 
eter values. Near these values the assumption of weak drop deformation for any We is incor- 
rect. 

It is noted that, for typical parameter values for fluids and surface reactions [L ~ 
102 , o ~ 101-102 erg/cm 2, do/dT - 0.i erg/(cm2"K), 8, ~ i-i00 K), we obtain Ma.~ 10-3-10 .4 , 
so that Ma,Pe I/= ~ I in the wide region of variation of Pe ~/2 m I. "" 
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